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Pressure fluctuations in a turbulent channel flow are investigated by analyzing a database 
obtained from a direct numerical simulation. Detailed statistics associated with the pres- 
sure fluctuations are presented. Characteristics associated with the rapid (linear) and 
slow (nonlinear) pressure are discussed. It is found that the slow pressure fluctuations are 
larger than the rapid pressure fluctuations throughout the channel except very near the 
wall, where they are about the same magnitude. This is contrary to the common belief that 
the nonlinear source terms are negligible compared to the linear source terms. Probability 
density distributions, power spectra, and two-point correlations are examined to reveal 
the characteristics of the pressure fluctuations. The global dependence of the pressure 
fluctuations and pressure-strain correlations are also examined by evaluating the integral 
associated with Green’s function representations of them. In the wall region where the 
pressure-strain terms are large, most contributions to the pressure-strain terms are from 
the wall region (i.e., local), whereas away from the wall where the pressure-strain terms 
are small, contributions are global. Structures of instantaneous pressure and pressure 
gradients at the wall and the corresponding vorticity field are examined. 

1. Introduction 
The pressure fluctuations in turbulent flows are of considerable interest in many en- 

gineering applications. Pressure fluctuations on aerodynamic surfaces of airplanes and 
turbine blades, for example, contribute to noise generation and often lead to undesirable 
structural vibrations. Understanding the nature of the pressure fluctuations is essential 
to alleviate such problems. In addition, because pressure at a given point in turbulent 
flows is related to global information of the associated velocity field, it may be possible to 
obtain such information by examining local pressure fluctuations. The pressure fluctua- 
tions are also intimately related to vorticity fluctuations, although the governing equations 
for the evolution of the vorticity fluctuations do not explicitly contain pressure fluctua- 
tions. The gradients of surface-pressure fluctuations, for example, are equal to the flux 
of vorticity from the wall. A better understanding of the surface-pressure fluctuations 
could lead to a better understanding of the vorticity dynamics in the wall region. From 
a turbulence modeling point of view, the pressure-strain correlations that appear in the 
Reynolds-averaged, Navier-Stokes equations are of significant interest because these terms 
are responsible for intercomponent energy transfer. In the Reynolds shear-stress budget 
equation, the pressure-strain term is, in fact, one of the two dominant terms. Existing 



models for the pressure-strain terms, however, are not satisfactory and are regarded as one 
of the major deficiencies in the Reynolds stress closure. Refer to Mansour et al. (1988) for 
a recent assessment of the existing turbulence models based on databases obtained direct 
numerical simulations. 

A great deal of experimental and theoretical work on pressure fluctuations has been 
performed during the past several decades. Willmarth (1975) provides a comprehensive 
review on the subject, and Eckelmann (1988) gives an updated review of our knowledge 
on pressure fluctuations. In spite of the considerable efforts evidenced in the literature, 
progress in our understanding of the pressure fluctuations has been very slow because 
of inadequate measurements of pressure fields in turbulent flows. This is because we do 
not yet have a reliable measurement technique for turbulent pressure fluctuations within 
turbulent flow comparable to the modern measurement techniques for turbulent velocity 
fluctuations. Consequently, most measurements reported to date have been performed only 
on the surface using a surface-mounted pressure transducer. Furthermore, many of the 
earlier surface-pressure measurements suffered from inadequate spatial resolution because 
of the large size of pressure transducers employed in the experiments. The errors involved 
turned out to be significant (Blake 1970; Willmarth 1975; Schewe 1983). Bradshaw (1967) 
also emphasized the importance of small-scale pressure fluctuations. He argued that the 
“active” universal velocity fluctuations in the wall region would lead to surface-pressure 
spectra containing a IC-’ slope up to the wave number range inversely proportional to the 
sublayer thickness. Most pressure transducers used in the earlier works were an order of 
magnitude larger than the sublayer thickness. Schewe (1983) also reported the effect of 
inadequate spatial resolutions of the pressure transducer on the measured power spectra. 
For example, he showed that the exponential decay exhibited in some of the measured 
power-spectra was due to the inadequate spatial resolution. 

Most theoretical works in which attempts were made to compute the pressure fluctua- 
tions and the power spectra - Kraichnan (1956), Lilley (1964), and Panton & Linebarger 
(1974), to name a few - also suffered from the lack of accurate information to guide 
their analyses. The analyses were based on the earlier measurements with the poor spatial 
resolution. Also, most of the theoretical work assumed that the contribution from the 
linear source term in the Poisson equation for pressure, representing the interaction of 
turbulence with the mean shear, is much larger than that from the nonlinear source terms 
representing interactions of the turbulence with itself. Corcos (1964), however, claimed 
that the nonlinear source terms should be of the same order of importance as the linear 
source term after analyzing the data of Willmarth & Wooldridge (1962). Willmarth (1975) 
later argued that Corcos’ conclusion may not necessarily be valid because the data used 
in the analysis did not satisfy the compatibility condition discussed by Phillips (1956). 

The objective of this paper is to document detailed statistics and turbulence struc- 
tures associated with pressure fluctuations in a wall-bounded turbulent shear flow. The 
database used in the present work was obtained from a direct numerical simulation of 
turbulent channel flow by Kim, Moin & Moser (1987, in short, KMM henceforth). The 
physical realism and accuracy of the computed flow fields have been established by de- 
tailed comparison with existing experimental results. Many of the results presented in 
this paper include new information that cannot be validated directly by comparing it with 
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experimental data, unlike most of the statistics and turbulence structures of the corre- 
sponding velocity field. However, the pressure fields considered in the present work are 
obtained from the same velocity fields whose validity has been thoroughly examined, and 
there is little doubt that the pressure information presented here is as valid as the velocity 
field. Also, although the Reynolds number considered is very low - Rea M 3300 based 
on the centerline velocity and the channel half-width - because of the enormous amount 
of computational time necessary for high Reynolds number simulations, most of the com- 
puted statistics, as well as turbulence structures of the velocity fields, were essentially the 
same as those obtained in higher Reynolds number experiments. It is expected that the 
essential characteristics of the pressure field presented in this paper also would differ only 
slightly from those of higher Reynolds number flows, except for some features observable 
only for high Reynolds number flows such as the inertial subrange in the power spectra of 
the pressure fluctuations. 

In 5 2, a brief description of numerical procedures and splitting of pressure according to 
its source terms is presented. Detailed statistics of pressure fluctuations are discussed in 
5 3. In 5 4, Green's function representation for the pressure fluctuations is presented. In 
5 5,  the structure of instantaneous pressure fields and its association with the corresponding 
velocity and vorticity fields will be discussed. A brief summary is given in 5 6. 

2. Numerical procedures and  splitting of pressure 

A direct simulation of fully developed turbulent channel flow - turbulent flow between 
two parallel plates - has been performed. The numerical algorithm and other details 
employed to generate the database can be found in KMM. The computation was carried 
out with about 2 x 10' grid points (128 x 129 x 128, in 2, y, and z ,  where x, y, z indicate 
streamwise, normal to the wall, and spanwise directions, respectively) for a Reynolds 
number of about 3300, based on the centerline velocity and channel half-width. The grid 
spacings in the streamwise and spanwise directions were Az+ M 17, and Az+ M 6 in 
wall units.t Nonuniform meshes were used in the normal direction. The first mesh point 
away from the wall was at y+ M 0.05, and the maximum spacing (at the centerline of the 
channel) was 4.4 wall units. A spectral method - Fourier series in the streamwise and 
spanwise directions and Chebychev polynomial expansion in the normal direction - was 
used for the spatial derivatives. The time advancement was carried out by a semi-implicit 
second-order scheme. 

The initial velocity field was obtained from a velocity field of a previous coarse compu- 
tation (Moin & Kim 1982) by spectrally interpolating the coarse velocity field onto the 
present collocation points. This reduced the time required to reach a statistically steady 
state. Once the velocity field reached the steady state, about 100 instantaneous velocity 
fields (each contains about 8 x 10' words) at a regular time interval were stored on magnetic 
tapes for future analyses, from which the present results were obtained. 

t The superscript + indicates a nondimensional quantity scaled by the wall variables, e.g., Y+ = YU, /V ,  

where v is the kinematic viscosity and U, = d G  is the wall shear velocity. 
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The turbulent pressure field for incompressible flows satisfies the following Poisson equa- 
tion: 

2 V P = -ui,j uj,i 

dP 1 d2v - (fl) = -- 
dY Re dy2 

where ui (i = 1,2 ,3)  or u,  v, w denote the three velocity components in the streamwise, 
normal to the wall, and spanwise directions, respectively, and p denotes the kinematic 
pressure. Here, all the flow variables are nondimensionalized by the friction velocity, u,, 
and the channel half-width, 6. The Reynolds number is defined as Re = u,S/v, and 
y = fl corresponds to the upper and lower walls. Equation (1) is obtained by taking 
the divergence of the Navier-Stokes equations. The Neumann boundary condition is a 
result of evaluating the normal component equation at the wall. One can use the Dirichlet 
boundary condition instead by evaluating the equations for horizontal components at the 
wall, but it has been demonstrated that any compatible velocity field will produce the 
same result (Moin & Kim 1980; KMM). The Poisson equation for pressure is solved by the 
same method as described in KMM for the velocity field: that is, a Fourier/Chebychev-tau 
method is used to invert the elliptic operator, which involves the inversion of a tridiagonal 
matrix with one extra full row representing the boundary condition. 

The pressure is sometimes split into rapid and slow parts by dividing the source terms 
in equation (1) into two parts, one containing the mean velocity gradient and the other 
without it. By decomposing the velocity field into mean and fluctuations as ui = Ui + ui 
and noting that the only nonzero mean velocity gradient for the present flow is dU/dy, 
equation (1) can be written as follows: 

dU dv’ 
dy dx 

v2p, = -2- - 

apr  - (fl) = 0 ,  
dY 

dP8 1 d2v’ 
- (H) = -- dY Re dy2 

where the subscripts T and s denote the rapid and slow parts, respectively. The terms 
“rapid” and “slow” are derived from the fact that only the rapid part responds immediately 
to a change imposed on the mean field, and the slow part will feel the change through 
nonlinear interactions. The slow part is sometimes referred to as the “return” term because 
it is believed by many to be responsible for returning the Reynolds-stress tensor toward 
isotropy. Sometimes, the rapid and slow pressure are also referred to as linear and nonlinear 
pressure, respectively, because the corresponding source terms in equation (2) are linear 
in the fluctuating quantities for the rapid part and nonlinear for the slow part. The 
above treatment of the boundary conditions, i.e., the homogeneous condition for the rapid 
pressure and the inhomogeneous condition for the slow pressure, is somewhat arbitrary. 
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Mansour, Kim & Moin (1988) suggested that the effect of the boundary condition should 
be treated separately by splitting the pressure into three parts as follows: 

dU dvl 
dy dx 

v 2 p r  = -2- - 

a p r  - (fl) = 0 ,  
8Y 

1 1  v2 p a  = -ui,j uj,i 

- ( f l ) = O ,  aPa 
dY 

(3) 

spat 1 a2vt 
- (fl) = -- dY Re dy2 

where pa t  is called the Stokes pressure. The Stokes pressure is solely due to the inhomo- 
geneous boundary condition and one can add the Stokes pressure either into the rapid 
part or into the slow part. The above triple splitting avoids the arbitrariness in treating 
the boundary condition, but it takes extra effort to carry the three terms (instead of two) 
separately in the analysis, and it may not be necessary to do so unless the Stokes pressure 
becomes significant. 

3. Pressure statistics 
Throughout the present paper, all quantities are nondimensionalized by the wall-shear 

velocity, u,, and the channel half-width, 6, unless otherwise stated. In some cases, the 
viscous length scale, u/uT,  is used when it appears to be more appropriate. One could 
use the following global parameters to convert from one form of nondimensionalization to 
others, if necessary: 

= 179 UT 6 Re, = - 

= 3251 VC6 Re, = - 

U 

U 

urn - = 15.6 
UT 

6* 
6 

= 0.141 - 

e 
- = 0.087 
6 

(4) 

where Uc, Urn, 6*, and 0 denote the centerline velocity, mass-averaged velocity, displace- 
ment thickness, and momentum thickness, respectively. 
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3.1 Rms pressure fluctuation and probability density distribution 

The profiles of the root-mean-square (rrns) fluctuation resulting from the triple splitting 
(equation (3)) across the channel are shown in figure 1. These results are obtained from a 
single realization (one pressure field) to examine the relative importance of each term. It 
is quite clear that the Stokes part is negligible compared to other two parts throughout the 
channel, including the near-wall region, where the Stokes part has its maximum. Thus, it 
would make little difference where we include the inhomogeneous boundary condition. For 
many practical purposes, one could use the homogeneous boundary condition for both the 
rapid and slow pressure and simply ignore the Stokes pressure as far as the rrns fluctuation 
is concerned. It should be noted, however, that this does not imply that the presence 
of the wall is not affecting the pressure fluctuations. Rather, it indicates that most of 
the influence from the presence of the wall is already built into the source terms through 
the no-slip boundary conditions (i.e., the source terms themselves are already affected by 
the no-slip boundary conditions on the velocities), and the explicit influence through the 
boundary condition to the Poisson equation is not significant. Because of the negligible 
contribution of the Stokes pressure to the total rms fluctuation, we use the conventional 
splitting (equation (2)) in the present paper unless otherwise stated. 

The profiles of the rrns fluctuation of the rapid, slow, and total pressure obtained by 
averaging over five velocity fields are shown in figure 2. We note that the slow part 
is substantially larger than the rapid part except very close to the wall (y+ < 15 or 
y/6 < O . l ) ,  contrary to the common belief that the rapid part would be the dominant one. 
Both the rapid and slow parts contribute approximately 75% of the total rms pressure 
at the wall (or about 55% of the total mean-square fluctuation). The two are negatively 
correlated, with the correlation coefficient about - 0.1 at the wall. Throughout the channel, 
the correlation between the rapid and slow pressure is negligible; the magnitude of the 
correlation coefficient is less than 0.1. To investigate whether this particular behavior is a 
characteristic peculiar to a low Reynolds number flow, pressure fluctuations from a higher 
Reynolds number flow - Re, PZ 400 or Rea M 7800 compared to Re, M 180 or Rea M 3300 
of the present case - have been examined (Kim 1988, unpublished work), and it showed 
basically the same trend (figure 3). For the high Reynolds number case, the rapid and 
slow rms pressure contribute approximately 70% each to the total rms fluctuations at 
the wall. The rrns wall-pressure fluctuations reported here are smaller than previously 
reported values, but they are increasing with the Reynolds number - 1.4 for Re, = 180 
and 1.9 for Re, = 400 - which is consistent with the analyses by Bradshaw (1967) and 
Townsend (1976). From his numerical simulations of turbulent boundary layers, Spalart 
(1988) reported the same trend of the wall-pressure fluctuations. 

To obtain further insight into the pressure splitting, the source terms that appear in 
equation (2) are examined. The profiles of the mean-square linear, nonlinear, and total 
source terms are shown in figure 4. Figure 4a shows that the nonlinear source term is much 
larger than the linear source term throughout the channel. This is because even though 
the mean shear is large in the wall region, av'/az is rather small (zero at the wall where 
the shear is the highest, and the mean shear drops significantly where dv' /dz  becomes 
finite away from the wall). Further breakdown of the nonlinear source terms - there are 
six different terms - is shown in figure 4b, and it is found that (av'/az)(aw'/ay) has the 
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largest mean-square value. Note that the magnitude of (av ' /az ) (aw ' /ay )  would be large 
at the core of streamwise vortices, and indeed it has a local peak at about y+=20, where 
the centers of streamwise vortices are located on the average (KMM). Note also that the 
locations of the maxima for each source terms approximately coincide with the location of 
the maximum r n s  pressure fluctuation. 

The probability density distribution function (pdf) of the pressure fluctuations at three 
different y-locations is shown in figure 5. The pdf at the wall shows an excellent agreement 
with the result obtained by Schewe (1983) in a turbulent boundary layer at Reynolds 
number, Reo = 1400 (Reo = 280 in a channel, for the present result). The data points of 
Schewe shown in the figure correspond to the values obtained from the smallest transducer 
with its diameter equal to 19 viscous units. Results obtained from larger transducers 
by Schewe (not shown here) showed a considerable dependence of pdf on the transducer 
size: smaller transducers measured more high-intensity fluctuations. To examine fractional 
contributions to the mean-square fluctuation, the integrand of 

J-w 

where f(7) is the probability density function, is computed, and is shown in figure 6.  The 
area under the curve is equal to the mean-square fluctuation, which has been normalized 
to be one. For comparison, the same quantity corresponding to the streamwise velocity 
fluctuations is also included in the figure. It is clear that relatively large contributions 
to the mean-square fluctuation are from high-intensity fluctuations, especially from the 
negative fluctuations, compared to the streamwise velocity fluctuations. For instance, at 
y+ = 12, only 1% of the data points exceeds f3 prms, but they contribute to about 42% 
of the total pr,, . Corresponding contribution to the streamwise velocity fluctuations, on 
the other hand, is negligible. While the mean-square streamwise velocity fluctuation takes 
larger contributions from the positive fluctuations (associated with the sweep-like events) 
near the wall (y+ < 15) and from the negative fluctuations away from the wall (y+ > 15), 
the mean-square pressure fluctuation takes its contributions about the same from both 
sides near the wall and more from the negative fluctuations away from the wall. 

The skewness and flatness factors, p'' / ( P ' ' ) ~ / ~  and p" / ( P " ) ~ ,  respectively, computed 
from the pdfs were presented in KMM and are shown in figure 7. The wall values of the 
skewness and flatness factors, - 0.1 and 5.0, respectively, are comparable to Schewe's results 
of - 0.2 and 4.9. Moving away from the wall region, pdf becomes more negatively skewed 
with a higher flatness factor (more intermittent) indicating the presence of localized and 
very low pressure regions. Robinson et al. (1988), in their analysis of the data of Spalart 
(1988), noticed a strong correspondence between low-pressure regions and streamwise vor- 
tices. It is likely that the intermittent occurrence of low-pressure fluctuations in the pdf 
is associated with the vortices present in the flow. The joint probability density distri- 
bution between pressure fluctuations and streamwise vorticity fluctuations is examined to 
find out whether this is the case. The joint pdfs at y+ x 30 and 100 (figure 8) indicate 
that large streamwise vorticity fluctuations are indeed more likely associated with large 
negative pressure fluctuations. It should be noted, however, that the reverse is not true. 

- -  - -  
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Large negative pressure fluctuations are not necessarily associated with the large stream- 
wise vorticity fluctuations, suggesting that additiond information is required in identifying 
organized vortical structures. 

9.2 Power spectra and two-point correlations 
The power spectra and two-point correlations in the streamwise direction at three dif- 

ferent y-locations are shown in figures 9 and 10. Because of the low Reynolds number 
considered here, we do not expect to see the distinct power-law behaviors for different 
wave-number ranges. For example, neither the k-'-range of Bradshaw (1967) nor the 
inertial subrange can be differentiated in figure 9 except for very narrow bands whose tan- 
gents are parallel to the expected slopes (one can show from a dimensional argument that 
the rapid pressure should decay as k-l'I3 while the slow pressure should decay as k - 7 / 3 ) .  

To compare the present wave-number spectra with the measured frequency spectra, we 
invoke Taylor's hypothesis with a convection velocity of pressure at the wall to yield: 

2n u = -v- x u; 

Vf 
= 2n- 

A+ 
( 5 )  

where k and X denote the corresponding wave number and wavelength, respectively, and 
V denotes the convection velocity of pressure. In the above conversion, V+=13 is used at 
the wall, which was obtained from the space-time correlation of pressure fluctuations at 
the wall. This will be discussed in 5 3.3. The nondimensional frequencies are indicated in 
figure 9. 

The power spectra at the wall (figure 9a) display no big difference between the rapid 
and slow parts, indicating no difference in length scales associated with the two pressures. 
This is somewhat surprising because one would expect a large contribution to the rapid 
pressure from low wave numbers and to the slow pressure from high wave numbers. Durbin 
(1978), using the rapid distortion theory (Townsend 1976), predicted that the effect of 
wall on the rapid pressure is to increase the amplitude of the spectra associated with the 
low wave numbers. The present results do not bear out this effect. The power spectra 
obtained from the smallest transducer by Schewe (1983) indicated a small region of u-7/3 
for 0.4 _< w+ _< 0.8 (other data obtained from larger transducers had a steeper fall-off, 
indicating the insensitivity of large-size transducers to high-frequency fluctuations). Figure 
9a also indicates a small region of kW7l3  at about the same frequency range. The power 
spectra at the centerline (figure 9c) show a different behavior between the two pressures 
more consistent with the expected behavior. That is, most of the energy of the rapid 
pressure resides in low wave numbers, while that of the slow pressure spreads over to small 
wave numbers. They both show a trace of the expected behavior of the inertial subrange: 
1C-l1i3 for the rapid pressure and k-'I3 for the slow pressure. 
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The peak in the power spectra of the rapid pressure, distinct at the centerline, but slightly 
noticeable at the wall, persists throughout the channel, indicating that this is related to a 
global phenomenon. The corresponding wave length is about 750 viscous units or about 46. 
The same convection velocity used above gives w+ = 0.11. It is interesting to note that this 
value is not too far from the bursting frequency reported in Luchik & Tiederman (1987), 
in which they used the quadrant analysis of velocity fluctuation to detect the bursting 
process: Tb+ = 90 of their nondimensional bursting period gives wb+ = 27r/Tb+ =0.07. The 
spectrum of the total pressure at the wall, however, has a maximum at the wave number 
and frequency corresponding to A+ = 330 and w+ = 0.26. 

Two-point correlations in the streamwise direction at the wall shown in figure 10a again 
indicate little difference between the two pressures. The two-point correlations at the 
centerline, however, show a marked difference between the two; one can see that the rapid 
pressure is correlated over a much longer distance. The dominance of the length scale 
associated with A+ = 750 discussed above is also obvious in the two-point correlation of 
the rapid pressure at the centerline. The fact that the correlations for the rapid pressure 
have negative excursions for all y-locations is a direct consequence of the presence of dv/dz 
in the source term. It can be easily shown that the area under the two-point correlations in 
the streamwise directions must be zero. Two-point correlations in the spanwise directions 
(not shown) do not have such negative excursions. Also included in figure 10a are the 
results obtained by Lee (1988, private communication), who used the rapid distortion 
theory to study the effect of wall on turbulence. The two-point correlation predicted by 
the linear theory is normalized such that the streamwise location where it crosses zero 
would be the same as that of the present result. As shown in the figure, the rapid pressure 
of the present result and that predicted by the linear theory are in good agreement. 

Two-point correlations with streamwise and spanwise separations, Rpp( Az, Az), at three 
different y-locations are shown in figure 11. The contours of constant correlations at the 
wall are slightly elongated in the streamwise direction, but they become more elongated 
in the spanwise direction away from the wall. This is quite a contrast to contours of other 
quantities, which are generally elongated in the streamwise direction in the wall region 
and become less so away from the wall. For comparison, contours of constant two-point 
correlations of the streamwise velocity fluctuations are shown in figure 12. Two-point cor- 
relations of the streamwise velocity fluctuations near the wall (figure 12a) illustrate the 
presence of the familiar streaky structures elongated in the streamwise direction dternat- 
ing in the spanwise direction with the mean spanwise spacing - estimated by twice the 
distance of the negative peak - about 100 wall units. The streamwise elongation becomes 
less pronounced away from the wall (figure 12b and 12c). The two-point correlations of 
the wall pressure shown in figure l l a  are similar to those obtained by Bull (1967), but 
there are some differences. Bull's results showed that contours for the high correlations 
were round, and become oval shapes at low correlations, but the present results do not 
show the oval shape at lower correlations. The contours at the centerline of the present 
results (figure l l c )  are more like Bull's results at the wall. 

Contours of constant two-point correlations of pressure as a function of streamwise and 
normal separations, Rpp( Az, y, y'), at three different y'-locations are shown in figure 13. 
For comparison, the same contours for the streamwise velocity fluctuations are also shown 
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in figure 14. Note that in figures 13 and 14, the y-coordinate is stretched by a factor of 
about two and the domain extends to the other wall. Unlike the correlations of streamwise 
velocity fluctuations, the maximum correlation of the pressure fluctuations is approxi- 
mately aligned along the normal direction to the wall. Note that contours of streamwise 
velocity fluctuations illustrate the presence of inclined structure with the maximum correla- 
tion aligned along a line inclined about 20” to the wall (figure 14b). Two-point correlations 
along the normal direction with zero separations in the streamwise and spanwise directions 
are shown in figure 15, and indicate that the correlation length for the pressure along the 
normal direction is much larger than for the other quantities. 

3.3 Space-time correlation and convection velocity. 

Space-time correlations of the total pressure as a function of streamwise separation and 
time delay, Rpp(Az,At), are computed from 50 consecutive pressure fields, which were 
obtained from 50 consecutive velocity fields stored at an interval of At+ = 3. Figure 16 
shows the space-time correlation at the wall. It shows basically the same characteristics 
as the one measured by Willmarth & Wooldridge (1962) in a turbulent boundary layer. 
The maximum correlation is along the first (or third by the symmetry) quadrant in the 
(Az, At)-plane, indicating that the pressure eddies are propagating downstream. They 
lose their correlations as they propagate downstream, and there is a slight increase in the 
slope of dAz/dAt, suggesting that the propagation speed of large eddies is higher than that 
of small eddies because only large eddies retain their coherence at large time separations. 

There are several ways to determine propagation velocityt using the space-time correla- 
tions (see Wills 1964, for example). In the present work, we used the propagation velocity 
determined by 

(6) 
A ~ m c r z  

At 
v, = 

Azm,, is the streamwise separation where the space-time correlation, R,,(Az, At), is 
maximum for a given At. Vp determined this way will be a function of At used in equation 
(6), but their variation is rather small as indicated in figure 16, where the ridge of the 
maximum correlations forms approximately a straight line. At+ = 18 was used for the 
present work.$ The propagation velocity determined as such was Vp = 0.72 U, or Vp = 
13 uT at the wall, and there was little difference among the rapid, slow, and total pressure. 
Willmarth & Wooldridge (1962) found that Vp varied from 0.56 U ,  to 0.83 U ,  in a 
turbulent boundary layer depending on the probe separation used. Schewe (1983) reported 
Vp = 0.53 U, or V, = 11.9 u,, but it was determined by sampling only high amplitude 
fluctuations. A further discussion of the propagation speeds for velocity, pressure, and 
vorticity fluctuations, including their dependence on eddy sizes, will be reported elsewhere 
(Hussain & Kim 1989). The propagation velocity of the pressure at the wall is larger 
than that of each velocity or vorticity component at the wall. For all three velocity and 

t Strictly speaking, it is “propagation velocity,” but the term “convection velocity” has been used in the 
literature. We use them interchangeably in the present paper. 
$ The dependence of the propagation velocity on At was examined and it was found that vp varied from 

0.7 U, to 0.8 U, for 9 5 At+ 5 27. 
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Pressure  fluctuation^ 

vorticity components, the wall convection velocitiest determined by space-time correlations 
were about the same, at 0.53 V,  and 9.6 u,. 

Schewe (1983) estimated the location of the “effective” source terms for the pressure by 
the distance from the wall where the mean velocity was equal to the propagation velocity 
of the pressure at the wall. For the present work, this corresponds to y+ 23 with U 
= 13 u,, which compares well with Schewe’s y+ = 21. It is interesting to note that the 
location of the effective source terms determined this way coincides approximately with 
the location where the mean-square source term has its maximum (figure 4a), of which 
most contributions are from the vortex-like structures (see 3 3.1). This suggests that the 
wall-pressure fluctuations can be regarded as a signature connected to vortex structures 
present near y+ M 20. This is consistent with Alfresson et al. (1988) who reported a 
large pressure peak underneath the internal shear-layer structure responsible for much of 
turbulence production in the wall region. 

4. Green’s function representation for the pressure fluctuations 
In this section, to gain a further insight into which part of the channel in the y-direction 

contributes most to the local pressure fluctuations, we represent the pressure fluctuations 
in terms of Green’s function. For the purpose of this section only, we use the homogeneous 
boundary condition for both the rapid and slow pressure. That is, we are using the triple 
splitting according to equation (3), but we neglect the Stokes part; this is justified because 
the contribution from the Stokes part is negligible, as discussed in 3 3.1. We first take the 
Fourier transform of equation (3) in the homogeneous directions to give 

where IC, and IC, denote the nondimensiond wave number normalized by 6 in the streamwise 
and spanwise directions, respectively, and fi and f represent the pressure and source terms 
in the Fourier space. It can be shown that Green’s function to equation (7) is 

cosh[E(y‘ - l)]cosh[IC(y + l)] 
2 IC cosh(IC) sinh(IC) for y < y’ = - 

cosh[IC(y‘ + l)]cosh[IC(y - l)] 
for y > y’ 2 IC cosh(lc) sinh(IC) W ’ Y , Y ‘ )  = - 

for IC # 0, where k = d m ,  and 

Z(y,y‘) = 0.5 (y’ - y) for y < y’ 
e(y,y’) = 0.5 (y - y’) for y > y’ (9) 

t For the velocity and normal vorticity at the wall, whose values are zero there, we use limiting values of 

the propagation velocities, all of which are constant in the region y+ < 10. 
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for IC = 0. The solution to equation (7) can now be written as 

The Green's functions at the wall, c ( k , y  = -1,y'), corresponding to three different 
wave numbers are shown in figure 17. The Green's functions corresponding to high wave 
numbers diminish rather quickly away from the source location, but those corresponding to 
the small wave numbers decay very slowly. This implies that the source terms associated 
with long streamwise and spanwise wave lengths will influence the pressure far away from 
the location of the source terms. Inverse Fourier transform of equation (10) gives 

where the convolution G*f (2, y, y', t) represents the inverse Fourier transform of z ( k ,  y, y') 
f(kz,y',kz). Equation (11) gives an expression for pressure at a given point in terms of 
contributions from various y-locations. An example is given in figure 18 in which con- 
tributions to instantaneous pressure at an arbitrary location at the wall are shown. It 
illustrates that the source terms near one wall contribute significantly to the total and 
slow pressure at the other wall; the contribution to the rapid pressure from near the other 
wall is negligible. Obviously the slowly decaying Green's function for low wave numbers 
(figure 17) induces such global dependence. Note that the Green's functions considered 
here are independent of the Reynolds number, and this nonlocal dependence would be the 
same for high Reynolds number flows unless the source terms change drastically such that 
the low wave number contents of the source terms diminishes significantly. 

From equation (ll), one can write a similar expression for the mean-square fluctuations 
as follows: 

1 

PW = J P(y> G * f (y ,y ' )  dy' 
-1 

J-1 J-1 

= ll h(Y,Y') dY' 

where the overbar denotes an average over the z and I directions. Contributions to the 
mean-square wall-pressure fluctuation are shown in figure 19, which indicates that most 
contributions are from the wall region. It appears that even though the instantaneous 
pressure at one wall is strongly affected by the source terms from the other side of the 
channel (figure 18), their net effects are not correlated to give a significant contribution to 
the mean-square fluctuation. 

In turbulence modeling, much effort has been directed toward developing models for 
the pressure-strain terms, = p(ui,j + uj,i).  This is because not only are these terms 
responsible for redistributing the kinetic energy among the three components, but also 
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p 512 is one of the two dominant terms in the budget of the Reynolds shear-stress equation 
- the other is the production term (see Mansour et al. 1988, for details). It has been of 
significant interest to modelers to know how local these terms are in order to make certain 
approximations in developing models for them. Using equation (ll), one can write 

- --- 
The pressure-strain terms that appear in u'2, 0'2, wl2, and ulvl at two different y-locations 
- one near the wall where they are large and the other away from the wall where they 
are relatively small (Mansour et al. 1988) - are shown in figure 20. It is clear from the 
figures that the pressure-strain correlations in the wall region (figure 20a-20c) take their 
largest contributions from the wall-region (contributions are local), but away from the wall 
the pressure-strain terms at a given y-location take their contributions from wide ranges 
of y-locations (global). This nonlocal character of the pressure-strain terms would make 
them hard to model in terms of local variables. 

5. Structures of instantaneous pressure fluctuations. 
In this section we examine the characteristics associated with instantaneous pressure 

fields. Instantaneous pressure and other relevant quantities are presented in terms of 
contours of constant values. The domain shown in the following figures is a fraction of the 
total computational domain: the total domain was 47rb (or 2260 v / u r )  and 4 d / 3  (or 750 
v / u r )  in the streamwise and spanwise directions, respectively. In all cases, the solid lines 
denote positive quantities and the dashed lines denote negative quantities with respect to 
the plane-averaged mean value. 

Contours of constant rapid, slow, and total pressure at two different y-locations are 
shown in figures 21 and 22. Contours at the wall (figure 21) show that there is little 
difference in associated length scales between the rapid and slow pressure as discussed in 
5 3.2. Contours for the total pressure at the wall (figure 21c) are very similar to those 
obtained experimentally by Emmerling (see figure 9 of Willmarth 1975). Contours at 
the centerline (figure 22) show a marked difference between the rapid and slow pressure. 
Contours of constant, rapid pressure at the centerline also indicate the presence of the 
length scale, A+ x 750, mentioned in 3 3.2. It is also discernible from the contours at the 
centerline that they are more elongated along the spanwise direction. It should be noted 
that it is the pressure gradient rather than the pressure itself that appears in the Navier- 
Stokes equation. In other words, fluid motions are not affected by pressure; they respond 
to the imposed pressure gradients. Hence, it is more interesting to examine contours of 
constant pressure gradients. Such contours at the wall and the centerline of the channel 
are shown in figures 23-24. It is somewhat surprising to note that the contours of ap/az 
do not show any streamwise elongation, whereas those of @/By and a p / a t  do. Recall that 
it is the eddy associated with the streamwise velocity fluctuations that is mostly elongated 
in the streamwise direction. The magnitudes of instantaneous pressure gradients are quite 
large. For example, the maximum and minimum streamwise pressure gradients at the wall 
shown in figure 23a are 96 and -49, respectively, compared to the mean pressure gradient 
of -1 for the fully developed channel flow considered here. 
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The instantaneous pressure gradient at the wall is related to the vorticity flux at the 
wall (Lighthill 1963), which can be obtained by evaluating the Navier-Stokes equations at 
the wall. That is, 

av a 

The streamwise and spanwise components of vorticity are diffused into the surrounding 
fluid according to equation (14) at the wal1,t and then they are convected (and diffused) 
from the wall region. They will subsequently interact with (and modify) turbulence struc- 
tures responsible for the source terms that created the pressure gradients at the wall. The 
new, modified source terms will create new pressure gradients at the wall, which in turn 
determine the flux of vorticity at the wall, and so on. From equation (11) and figure 18, we 
also note that the vorticity flux at the wall is determined globally. Even the source term on 
the other side of the channel will influence the flux of vorticity at one side of the channel 
by affecting the instantaneous pressure, and hence, the instantaneous pressure gradient. In 
some transitional flows, the pressure gradients at the wall and source terms away from the 
wall - usually located just above the critical layer - work together in phase to contribute 
to flow instability (Morkovin 1988, private communication). Also, Kim (1983) and Jo- 
hansson et al. (1988) showed a strong link between a turbulence structure responsible for 
intense turbulence production and a localized pressure peak at the surface. This suggests 
a possibility that one can modify the structure of turbulence by artificially modifying the 
pressure gradient at the wall, and hence the turbulence production in the boundary layer. 

Contours of constant streamwise and spanwise vorticity at the wall are shown in figure 
25. A striking similarity exists between the spanwise pressure gradient at the wall (figure 
23c) and the streamwise vorticity at the wall (figure 25a), but the correlation between the 
streamwise pressure gradient at the wall (figure 23a) and spanwise vorticity (figure 25b) is 
not discernible at all. It is not clear what causes this difference. 

6. Summary and discussions 
Turbulence statistics associated with pressure fluctuations in a turbulent channel flow 

are studied by analyzing the database obtained from a direct numerical simulation (Kim 
et al. 1987). The pressure is split into the rapid (linear) and slow (nonlinear) parts 
corresponding to the linear and nonlinear source terms in the Poisson equation. Contrary 
to the common belief that the rapid pressure is the dominant component, it is found 
that the slow pressure is comparable near the wall and larger away from the wall. The 
corresponding source terms also show the same trend. Among the nonlinear source terms, 
it is found that ( a v / a z ) ( a w / a y ) ,  which is large in the core of streamwise vortices, is the 
most dominant term. The mean-square of the nonlinear source terms, (av/az)(aw/ay) in 
particular, peak at about y+ M 20, and the major contribution to the mean-square wall- 
pressure fluctuations comes from this region. The convection velocity of the wall pressure 

t Diffusion of the normal vorticity is determined by the solenoidal conditions, a w v / d y  = -&,/ax - 
aw,/az. 
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measured from the space-time correlation of the wall-pressure fluctuation is also found to be 
equal to the local mean velocity at about the same y-location, indicating that the coherent 
part of the wall pressure can be regarded as a footprint connected to flow structures present 
at about y+ M 20. This view is consistent with Kim (1983) and Alfresson et al. (1988) 
who observed that the internal shear-layer structures responsible for a major portion of 
turbulence production were associated with a high localized wall-pressure peak. This, in 
turn, suggests that one can interfere with the flow structures responsible for turbulence 
production either by directly modifying the wall pressure or by manipulating other flow 
variables at the wall to control wall-bounded turbulent flows. 

The probability density distribution illustrates that the pressure fluctuations are much 
more intermittent than velocity fluctuations, and high negative fluctuations provide a sub- 
stantial contribution to the mean-square fluctuation. Much of these negative fluctuations 
are correlated with high vorticity fluctuations. Robinson et al. (1988) showed that it was 
easier to identify a vortical structure using low pressure as a detecting criterion than the 
velocity or vorticity itself. Using low pressure as a diagnostic tool in identifying vorti- 
cal structures is promising, but it should be used with some caution because not all low 
pressure regions are associated with organized vortical structures, although the reverse is 
generally true. 

The power spectra and two-point correlations show that there is little difference between 
the rapid and the slow pressure near the wall, but they differ considerably from each other 
away from the wall. The behavior of the two-point correlation of the rapid pressure at 
the wall is in good agreement with that obtained by using the rapid distortion theory, 
suggesting the usefulness of the linear theory. Other aspects on the effect of the wall on 
turbulence can be studied using the linear theory, which is much less costly and simple to 
analyze. 

Green’s function representation is used to demonstrate the global dependence of pressure 
fluctuations. It is shown that instantaneous pressure at one wall is influenced significantly 
by the source terms from near the other wall. However, the same representation for 
the mean-square fluctuation illustrates that although the instantaneous pressure has a 
global dependence, most contributions to the mean-square fluctuation are local, indicating 
that the influence from far away is averaged out with small net effects. Contributions 
to the pressure-strain correlations are local near the wall, but global away from the wall. 
This nonlocal character of the contributions to the pressure-strain correlations raises an 
important question of whether one can model them in terms of local variables as is done 
currently. 

Contours of constant pressure gradients show that those associated with &/8y and 
&/dz are somewhat elongated in the streamwise direction, but not those associated with 
d p / d z .  Examination of vorticity and pressure gradients at the wall, which control the 
diffusion of vorticity from the wall, shows a strong correlation between w, and d p / a z ,  
but it shows no apparent correlation between w, and ap/az. Further study is required to 
explain this interesting but puzzling observation. 
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Figure 1. Root-mean-square fluctuation for each pressure according to equation (3): 
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9 Figure 5. 
computation; -- -- , Gaussian distribution; o , Schewe (1983). The abscissa is normalized 
by the local rms pressure fluctuations and the ordinate is normalized such that the area 
under the curve is equal to one: (a) y+ = 0; (b)y+ = 12; (c)y+ = 100. 
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Probability density distribution of the total pressure-fluctuations: - 
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9 P'. Figure 6. 
The abscissa is normalized by the corresponding local rms fluctuations and the ordinate 
is normalized such that the area under the curve is equal to one: (a) y+ = 0 for p and 
y+ = 5 for a; (b)y+ = 12; (c)y+ = 100. 

Fractional contributions to the mean-square fluctuation: - , ---- 
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Fig. 9 
the streamwise direction: (a)  y+ = 0; (b)  ys = 50; (c) y+ = 180. 

Power spectra of the rapid (- ), slow ( - - - -  ), and total (--- ) pressure in 
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Figure 10. Two-point correlations of the rapid (- ), slow (---- ), and total,(--- ) 
pressure in the streamwise direction: (a) y+ = 0; (b) y+ = 50; (c) y+ = 180. The symbols 
represent the results obtained by Lee (1989) using the rapid distortion theory. 
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Fig. 11 Contours of constant two-point correlations of the total pressure fluctuations, 
R p p ( ~ , , r L ) :  (a )  g+ = 0; (b) y+ = 50; (c) y' = 180. The contour level '1' corresponds to 
0.1 and higher levels are incremented by 0.1, and the tick marks in the axes represent. 50 
wall units. 
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Figure 12. Contours of constant two-point correlations of the streamwise velocity fluc- 
tuations, R,,(Az,Az): (a) y+ = 0; (b) y+ x 50; (c) y+ = 180. The contour level '1' 
corresponds to 0.1 and higher levels are incremented by 0.1, and the tick marks in the axes 
represent 50 wall units. 
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Figure 13. Contours of constant two-point correlations of the total pressure fluctuations, 
Rpp(Az,y,y'): (a) y'+ = 0; (b) y'+ = 50; (c) y'+ = 180. Note that Ay/6 = 0.2 corresponds 
to Ay+ = 36, and the y-coordinate is stretched by a factor of about two. 
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Figure 14. Contours of constant two-point correlations of the streamwise velocity fluc- 
tuations, Ruu(Az,y,y'): (a) y'+ = 10; (b) y'+ = 50; (c) y'+ = 180. Note that Ay/b = 0.2 
corresponds to Ay+ = 36, and the y-coordinate is stretched by a factor of about two. 
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Fig. 16 Space-time correlation of the wall-pressure fluctuations, Rpp(r , ,  rt ). 
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Fig. 17  
0.5 and k,6 = 2n/ (Xz /6)  = 1.5; - - - -  , k,6 = 5 and k,6 = 15; 
= 75. Each Green's function is normalized such that its maximum value is equal to one. 

Green's function for three different wave numbers: - , k,6 = 2n/(X,/6) = 
, k,6 = 25 and k,6  
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Fig. 8 Contribution to instantaneous wall pressure, p ( z  = 0, y = --, z = 0), from 
across the channel: - , rapid pressure; ---- , slow pressure; - -- , total pressure. 
The ordinate is normalized such that the maximum value is equal to one. 
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Fig. 19 Contribution to the mean-square wall-pressure fluctuation from across the than- 
nel: - , rapid pressure; - - - -  , slow pressure; --- , total pressure. The ordinate is 
normalized such that the maximum value is equal to one. 
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Fig. 20 
2p(av/ay); , p(au/8y + av/ax). The ordinate is normalized 
such that the maximum value of the four terms is equal to one. (a) rapid, (b)  slow, and 
( c )  totd pressure-strain at y+ z 10; 

Contributions to the pressure-strain correlations: - , 2p(au/a+); - - - -  , 
, 2p(au7/a:); - -  . . -  
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Fig. 20 - continued (d)  rapid, (e) slow, and ( f )  total pressure-strain at ys 2 100. 
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Contours of constant, (a) rapid, (b)  slow, and (c) total pressure at the wall. The Fig. 21 
mean flow direction is from left to right, and the tick marks denote 50 wall units. 
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Fig. 22 
The mean flow direction is from left to right, and the tick marks denote 50 wall unit,s. 

Contours of constant (a)  rapid, (b)  slow, and ( c )  total pressure at the centerline. 
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Fig. 23 
mean flow direction is from left to right, and the tick marks denote 50 wall units. 

Contours of constant (a) ap/ar, ( b )  ap/ay, and (c )  dp/dz  at the wall. The 
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Fig. 24 
mean flow direction is from left to right, and the tick marks denote 50 wall units. 

Contours of constant (a) ap/az,  (b) l l p / a y  and (c) a p / d z  at the centmedine. The 
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Fig. 25 Contours of constant (a) streamwise and (b) spanwise vorticity at the wall. 
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